STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022

BY Developers FOR Developers

Computational Storage: How do NVMe and SNIA CS Work Together

Bill Martin SNIA: TC Co-Chair, Computational Storage Editor NVMe: Board member, Computational Programs Co-Chair Samsung Semiconductor Inc. SSD IO Standards

Agenda

- Overview of SNIA CS Model
- Overview of NVMe CP Model
- NVMe-SNIA mapping
- Summary

SNIA Computational Storage Architecture

Computational Storage Drive

Computational Storage Array Host 1 Host n CS Fabric (PCIe, Ethernet, etc) MGMT I/O Computational Storage Resource(s) Storage Controller **Resource Repository** Array CSF | CSEE Engine (CSE) Control Fransparer FDM CSF Storage AFDM Access Proxied **Device Memory** Storage Access Storage Device Storage Device or CSD or CSD

Computational Storage Array (CSA)

SNIA Architectural Elements for CS Drive

Computational Storage Drive (CSD)

- Computational Storage Engine
 - Computational Storage Engine Environment
 - Computational Storage Function
- Resource Repository
 - CSFs
 - CSEE
- Data may be transferred between Device Storage and AFDM
- CSFs operate on data in Function Data Memory or Device Storage
 - FDM Allocated as AFDM
 - Input Data and/or
 - Output Data
- Device Storage
 - Input Data and/or
 - Output Data

NVMe Computational Storage Architectural Components

	Host	
	NVMe Controller	
3 2 1 0 Programs Compute Namespace 1 3 2 1 0 Programs Compute Namespace 2 Compute Namespace 2	Memory Range Set Subsystem Local Memory	NVM Namespace 100 NVM Namespace 101 NVM Namespaces
Domain 1		
NVM Subsystem		

- Compute Namespaces
 - Compute Engines
 - Programs
- Programs operate on data in Subsystem Local Memory
 - Allocated as Memory Range Set
 - Includes program input, output
- NVM Namespaces
 - Persistent storage of data
 - NVM
 - ZNS
 - KV
- Data is transferred between NVM Namespaces and SLM

This presentation discusses NVMe work in progress, which is subject to change without notice.

Correlation of SNIA/NVMe terms

SNIA Terms

- Computational Storage Engine
- Computational Storage Engine Environment
- Resource Repository
 - Downloaded CSF and CSEE
 - Pre-loaded CSF and CSF
- Function Data Memory (FDM)
- Allocated FDM (AFDM)
- Device Storage

NVMe Terms

- Compute Engine/Compute Namespace
- Virtual (Not currently defined)
- Programs
 - Downloaded programs
 - Device-defined programs
- Subsystem Local Memory (SLM)
- Memory Range Set
- NVM Namespaces

Computational Storage Drive (CSD)

7 | ©2022 Storage Networking Industry Association. © 2022 Samsung All Rights Reserved.

This presentation discusses NVMe work in progress, which is subject to change without notice

Computational Storage Drive (CSD)

8 | ©2022 Storage Networking Industry Association. © 2022 Samsung All Rights Reserved.

This presentation discusses NVMe work in progress, which is subject to change without notice

9 | ©2022 Storage Networking Industry Association. © 2022 Samsung All Rights Reserved.

This presentation discusses NVMe work in progress, which is subject to change without notice

Computational Storage Drive (CSD)

10 | ©2022 Storage Networking Industry Association. © 2022 Samsung All Rights Reserved.

This presentation discusses NVMe work in progress, which is subject to change without notice

Memory

Host

STORAGE DEVELOPER CONFERENCE

NVM Namespace 100

NVM Namespace 101

NVM Namespaces

Differences between SNIA and NVMe

SNIA

- Defines CSEE
- CSF can directly access
 AFDM or Storage
- Supports an indirect model

NVMe

- CSEE is logical no specific definition
- Program only accesses
 Memory Range Set
- Specific Execute command only
- Join SNIA and NVMe in the standardization effort

Summary

SNIA

- A general architectural model for computational Storage
- Flexibility for a variety of protocols
- API specifies a Application programming interface

NVMe

- A specific I/O Command Set for computational Programs
- Specific for the NVMe protocol
- Library maps API calls to specific NVMe protocols
- Join SNIA and NVMe in the standardization effort

Please take a moment to rate this session.

Your feedback is important to us.

