STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022

BY Developers FOR Developers

A SNIA. Event

Direct Drive

Azure's Next-Generation Block Storage Architecture

Greg Kramer

Partner Software Architect

Microsoft Azure Storage

Agenda

- Introduction
- Architectural overview
- Notable design elements
- Questions

Introduction

What and why?

 Direct Drive is the internal code name for Azure's next-generation block storage architecture

- The foundation for a new family of disk offerings
 - Summer 2019: Azure Ultra Disk
 - Summer 2022: Azure Premium Disk v2 (in preview)
- Motivation
 - Microsoft has decades of storage experience
 - On-premises (Windows / Windows Server)
 - Public cloud (Azure).
 - New storage workloads and new technologies are constantly emerging
 - How would we use our experience to reimagine block storage for the next decade's worth of growth?

A Spectrum of Deployment Options

- Hyper-converged or disaggregated deployments
- Single server, fully-virtualized for developer inner-loop testing
- Small to medium scale, suitable for on-prem/edge
- All the way up to hyper-scale Azure

One disk for the job

Reduce the need to group multiple disks to achieve desired performance

One disk for the job...

Allow IOPS, throughput, and disk size to be independently configured.

No need to provision for worst case

Allow performance to be changed dynamically to match workload needs

STORAGE DEVELOPER CONFERENCE

Positioned to take advantage of new technologies

- High speed, low latency networks
- New storage network protocols (more on this later)
- Storage class memory (SCM) and other innovations in storage media
- Hardware offloads (network, crypto, CRC, etc.)

Leverage these to provide consistently high-performance while maintaining desired durability guarantees

Simplify the I/O path

Fewer layers means better, more consistent performance. Clients should be able to access data directly (the "Direct" in Direct Drive), avoiding load-balancers, front ends, partitioning layers, etc.

Architectural Overview

Before we get started...

- The Direct Drive architecture is very flexible
- Many options in terms of:
 - Form factors and deployment scale
 - Performance
 - Data durability guarantees
 - Feature set

This talk is about the architecture, not specific products built on it.

- Just because the architecture allows it, doesn't mean it's available in a product.
- Always consult official docs for product capabilities, limitations, guarantees, etc.

Disks

Two types of disks:

4 KiB logical and 4 KiB physical sector

Core feature set includes:

512 B logical and 4 KiB physical sector (best performance with 4K-aligned I/O to avoid read-modify-write penalty)

- Shared disks (single-writer/multi-reader and multi-writer/multi-reader)
- Crash consistent, distributed snapshots
- Disk migration (move disk between storage clusters while mounted and taking I/O)

Disk Layout (slices)

Disks are managed in fixed-size chunks called slices

* Slice size is a configurable property of a disk, 64 MiB is just an example.

* Number of BSS instances in a replica set is determined by disk durability requirements. Four is just an example.

STORAGE DEVELOPER CONFERENCE

	A slice's BSS instances are selected from different fault domains to avoid correlated failures that could result in data loss.				
4Kn Disk		Slice 1	Slice 2		Slice 3
		Fault Domain	Fault Domain	Fault Domain	Fault Domain
Slice O Replica Set	Change Coordinator Service (CCS)	Block Storage Service (BSS)	Block Storage Service (BSS)		Block Storage Service (BSS)
16 ©2022 Microsoft Corporation. All Rights Reserved.					

Writing to a slice

Writing to a slice...

* N and M are configurable. In this example, the slice is configured for a quorum of 3 out of 4 BSS instances.

Reading from a slice

storage developer conference

Reading from a slice...

Retries due to replica behind are rare in most workloads. Replica set can be configured with N == M to avoid if necessary.

A CCS/BSS handles multiple slices. This means the load for a disk is spread over many nodes to reduce bottlenecks.

STORAGE DEVELOPER CONFERENCE

A CCS/BSS handles multiple slices. This means the load for a disk is spread over many nodes to reduce bottlenecks.

STORAGE DEVELOPER CONFERENCE

Disk Layout – The Client's View

Disk client's view of disk layout

The disk client stripes data to help avoid replica set hot spots and improve performance.

Example shows 4-way stripe set with 256 KiB stripe width, but is configurable per disk

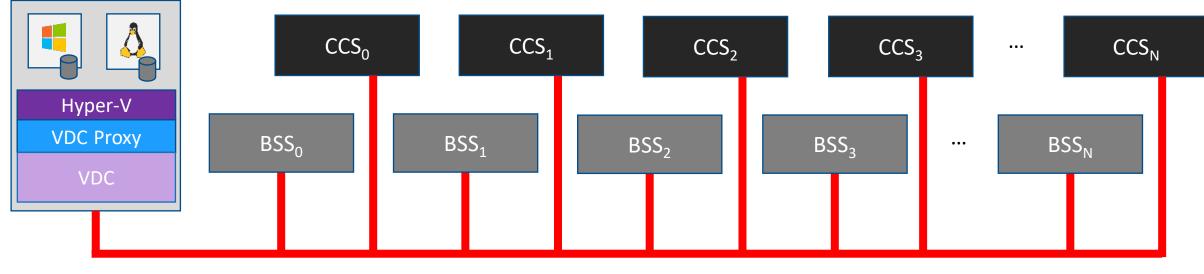
VM LBA Slice # Slice Sector #

Disk Client

Virtual machines with attached Ultra / Premium v2 disks

Hypervisor

Allows disk client stack to be updated while disks are mounted and performing I/O.


Mount / dismount, report / handle errors, issue / throttle disk I/O requests, disk striping logic.

Nodes hosting storage roles Control plane TORAGE DEVELOPER CONFERENCE

Direct Drive Data Plane

Data plane consists of the components that issue and perform disk I/O

DDX

Data plane requests use a custom storage/network protocol named DDX (more on this later).

Metadata Service (MDS)

- Responsible for assigning CCS/BSS instances to slice replica sets
- Handles disk control requests: create, delete, mount, grow, etc.
- Handles error reports and issues corrective actions to data plane
- Spread across fault domains to prevent correlated failures
- PAXOS state replication
 - Primary
 - Secondaries
- RPC used for intra-cluster control traffic

Gateway Service (GS)

- HTTPS front end that sits behind a Software Load Balancer (SLB)
- Spread across fault domains
- Authenticates and forwards extra-cluster control requests to Primary MDS

Putting it all together

Notable Design Elements

DDX Protocol

- A purpose-built storage network protocol for Direct Drive data plane
- Why not NVMEoF, iSCSI, or other off-the-shelf block protocols?
 - Distributed nature of disk slices cannot be hidden from client to efficiently support:
 - Consistent reads/writes across slice replica sets
 - Shared disks (single-writer/multi-reader and multi-writer/multi-reader)
 - Crash consistent distributed snapshots
 - Disk migration
 - End-to-end diagnostic support baked directly into protocol
 - Activity IDs attached to requests and sub-requests to allow distributed log search
 - Request completions carry diagnostic data from responder needed to automatically identify problems
 - Time spent in queue
 - Time spent on network
 - Time spent waiting on storage media
 - Etc.
 - Agility
 - Need to be able to rapidly evolve protocol to address issues, implement new features, and take advantage of new opportunities

Remote Direct Memory Access (RDMA)

- Steal a page from Window Server 2012's playbook!
- SMB Direct (MS-SMBD) always meant to be a generic RDMA transport
 - Now transports the vast majority of Azure Disk traffic

SCM Writeback Cache

Hide SSD latency from disk client by using storage class memory (SCM)

Traditional I/O Throttling

Clients typically implement throttles in the initiation path:

- Receive I/Os from VM
- Delay issuing I/Os to backend to match disk's configured IOPS
- Complete I/Os back to VM as soon as they are completed by backend
- By the time the I/Os are issued, they must be processed ASAP to meet completion deadline.
- Anything that slows down transmission or processing of I/O risks violating the completion deadline, increasing disk's latency distribution tail.

Traditional I/O Throttling

35 | ©2022 Microsoft Corporation. All Rights Reserved.

Assume IOPS configured to 4 for simplicity

Traditional I/O Throttling Disadvantage

Slow down due to spike in load, network congestion, etc.

36 | ©2022 Microsoft Corporation. All Rights Reserved.

Assume IOPS configured to 4 for simplicity

Completion Side I/O Throttling

VDC implements disk throttle in the completion path

- Receive I/Os from VM
- Issue I/Os received from VM to backend immediately*
- Delay completion of I/Os to VM to match the disk's configured IOPS
- By allowing I/Os to be processed ahead of time, the system is more resilient to slow downs induced by load spikes, network congestion, etc.

Completion-Side I/O Throttling

38 | ©2022 Microsoft Corporation. All Rights Reserved.

Assume IOPS configured to 4 for simplicity

Completion-Side I/O Throttling Advantage

Assume IOPS configured to 4 for simplicity

Questions?

Please take a moment to rate this session.

Your feedback is important to us.

