STORAGE DEVELOPER CONFERENCE

SD2 Fremont, CA September 12-15, 2022

BY Developers FOR Developers

PCIe[®] 6.0 Specification and Beyond: Enabling Storage and Machine Learning Applications

Presented by

Dr. Debendra Das Sharma

Intel Senior Fellow & co-GM Memory and I/O Technologies, Data Center and AI Group, Intel Corporation Director, PCI-SIG[®] Board

A SNIA, Event

Agenda

Introduction: Evolution of PCI Express[®] Technology
PCIe[®] 6.0 Specification: A Deep Dive
PCI Express Technology and Storage/ ML
Form Factors
Compliance
Conclusions

Evolution of PCI Express[®] Specification

- PCIe[®] specification doubles the data rate every generation with full backwards compatibility every 3 years
- Ubiquitous I/O across the compute continuum: PC, Hand-held, Workstation, Server, Cloud, Enterprise, HPC, Embedded, IoT, Automotive, AI
- One stack / same silicon across all segments with different form-factors; a x16 PCIe 5.0 device interoperates with a x1 PCIe 1.0 device!

PCIe Specification	Data Rate(GT/s) (Encoding)	Year
1.0	2.5 (8b/10b)	2003
2.0	5.0 (8b/10b)	2007
3.0	8.0 (128b/130b)	2010
4.0	16.0 (128b/130b)	2017
5.0	32.0 (128b/130b)	2019
6.0	64.0 (PAM-4, FLIT)	2022

PCIe specification continues to deliver bandwidth doubling for six generations spanning 2 decades! An impressive run!

Announcing the PCI Express[®] 7.0 Specification

Development of the specification has kicked off in the PCI-SIG[®] workgroups; the PCIe[®] 7.0 specification is targeted for release in 2025

PCI-SIG technical workgroups are developing the PCIe 7.0 specification with the following feature goals:

- Delivering 128 GT/s raw bit rate and up to 512 GB/s bi-directionally via x16 configuration
- Utilizing PAM4 signaling
- Focusing on the channel parameters and reach
- Continuing to deliver the low-latency and highreliability targets
- Improving power efficiency
- Maintaining backwards compatibility with all previous generations of PCIe technology

Revision	Max Data Rate	Encoding	Signaling		
PCIe 1.0 (2003)	2.5 GT/s	8b/10b	NRZ		
PCIe 2.0 (2007)	5.0 GT/s	5.0 GT/s 8b/10b			
PCIe 3.0 (2010)	8.0 GT/s	128b/130b	NRZ		
PCIe 4.0 (2017)	16.0 GT/s	128b/130b	NRZ		
PCIe 5.0 (2019)	32.0 GT/s	128b/130b	NRZ		
PCIe 6.0 (2022) 64.0 GT/s		1b/1b (Flit Mode*)	PAM4		
PCIe 7.0 (2025)	128.0 GT/s	1b/1b (Flit Mode*)	PAM4		

(*Flit Mode also enabled in other Data Rate with their respective encoding)

PCI Express[®] Specifications: Speeds and Feeds

PCIe® Speeds/Feeds - Pick Your Bandwidth

- Flexible to meet needs from handheld/client to server/HPC
- ~Max Total Bandwidth = Max RX bandwidth + Max TX bandwidth
- 35 Permutations yielding 11 unique bandwidth profiles
- Encoding overhead and header efficiency not included

Specifications	x1	x2	Lanes x4	x8	x16	
2.5 GT/s (PCle1.x +)	500 MB/S	1 GB/S	2 GB/S	4 GB/S	8 GB/S	
5.0 GT/s (PCle 2.x +)	1 GB/S	2 GB/S	/S 4 GB/S		8 GB/S 16 GB/S	
8.0 GT/s (PCle 3.x +)	2 GB/S	4 GB/S	8 GB/S	16 GB/S	32 GB/S	
16.0 GT/s (PCle 4.x +)	4 GB/S	8 GB/S	16 GB/S	32 GB/S	64 GB/S	
32.0 GT/s (PCle 5.x +)	8 GB/S	16 GB/S	32 GB/S	64 GB/S	128 GB/S	0
64.0 GT/s (PCle 6.x +)	16 GB/S	32 GB/S	64 GB/S	128 GB/S	256 GB/S	
128.0 GT/s (PCle 7.x +)	32 GB/S	64 GB/S	128 GB/S	256 GB/S	512 GB/S	÷

DRAGE DEVELOPER CONFERENCE

Bandwidth Drivers for PCI Express[®] Specifications

- Device side: Networking (800G in early 2020s), Accelerators, FPGA/ ASICs, Memory
- Alternate Protocols on the PCIe[®] specification
- As the per socket compute capability grows at an exponential pace, so does I/O needs – we have already added a lot of Lanes per socket (currently 128 Lanes) => speed has to go up
- But ... we need to meet the cost, performance, power metrics as an ubiquitous I/O with hundreds of Lanes in a platform

(New Usage Models: Storage, Cloud, Al/ Analytics, Edge)

New usage models are driving bandwidth demand – doubling every three years

Key Metrics for PCIe[®] 6.0 Specification

Metrics	Expectations
Data Rate	64GT/s, PAM4 (double the bandwidth per pin every generation)
Latency	<10ns adder for Transmitter + Receiver over 32.0 GT/s (including FEC) (We can not afford the 100ns FEC latency as networking does with PAM4)
Bandwidth Inefficiency	<2 % adder over PCIe 5.0 specification across all payload sizes
Reliability	0 < FIT << 1 for a x16 (FIT – Failure in Time, number of failures in 10 ⁹ hours)
Channel Reach	Similar to PCIe 5.0 specification under similar set up for Retimer(s) (maximum 2)
Power Efficiency	Better than PCIe 5.0 specification
Low Power	Similar entry/ exit latency for L1 low-power state Addition of a new power state (L0p) to support scalable power consumption with bandwidth usage without interrupting traffic
Plug and Play	Fully backwards compatible with PCIe 1.x through PCIe 5.0 specification
Others	HVM-ready, cost-effective, scalable to hundreds of Lanes in a platform

PAM4 Signaling at 64.0 GT/s

- PAM4 signaling: Pulse Amplitude Modulation 4-levels
 - 4 levels (2 bits) in same Unit Interval (UI); 3 eyes
 - Helps channel loss (same Nyquist as 32.0 GT/s)
- Reduced voltage levels (EH) and eye width increases susceptibility to errors
- Gray Coding to reduce errors in each UI
- Precoding to minimize errors in a burst
- Voltage levels at Tx and Rx define encoding

Voltage Level	Tx Voltage	Rx Voltage (V)
0	-Vtx	V <= Vth1
1	-Vtx/3	Vth1 < V <= Vth2
2	+Vtx/3	Vth2 < V <= Vth3
3	+Vtx	V > Vth3

Scrambled 2-bit aligned value		Unscrambled 2-	Voltage Level	DC-balance	
Prior to Gray Coding	After Gray Coding	bit as well TS0 Ordered Sets		Values	
10	11	11	3	+3	10.00
11	10	10	2	+1	
01	01	01	1	-1	
00	00	00	0	-3	STORAGE DEVELOPER

Error Assumptions and Characteristics w/PAM4

Parameters of interest: FBER and error correlation within Lane and across Lanes

- FBER First bit error rate
 - Probability of the first bit error occurring at the Receiver
- Receiving Lane may see a burst propagated due to DFE
 - The number of errors from the burst can be minimized
 - Constrain DFE tap weights balance TxEQ, CTLE and DFE equalization
- Correlation of errors across Lanes
 - Due to common source of errors (e.g., power supply noise)
 - Conditional probability that a first error in a Lane => errors in nearby Lanes
- BER depends on the FBER and the error correlation in a Lane and across Lanes

Our Approach: Light-weight FEC and Retry

- Light-weight FEC, strong CRC, and keep the overall latency (including retry) really low so that the Ld/St applications do not suffer latency penalty
- We are better off retrying a packet with 10⁻⁶ (or 10⁻⁵) probability with a retry latency of 100ns vs having a FEC latency impact of 100ns with a much lower retry probability

Low latency mechanism w/ FBER of 1E-6 to meet the metrics (latency, area, power, bandwidth)

FLIT Encoding : Low-latency w/ High Efficiency

- FLIT (flow control unit) based: FEC needs fixed set of bytes
- Error Correction (FEC) in FLIT => CRC (detection) in FLITs => Retry at FLIT level
- Lower data rates will also use the same FLIT once enabled
- FLIT size: 256B
 - 236B TLP, 6B DLP, 8B CRC, 6B FEC
 - No Sync hdr, no Framing Token (TLP reformat), no TLP/DLLP CRC
- Improved bandwidth utilization due to overhead amortization
 - FLIT Latency: 2ns x16, 4ns x8, 8ns x4, 16ns x2, 32ns x1
 - Guaranteed Ack and credit exchange => low Latency, low storage
- Optimization: Retry error FLIT only + existing Go-Back-N retry

Low latency improves performance and reduces area

	x8 Lanes	U	1	- 2	5	4	5	0	
	256 UI								
C	TLP Bytes	0	1	2	3	4	5	6	
3	(0-299)	8	9	10	11	12	13	14	
		16	17	18	19	20	21	22	
s =>		24	25	26	27	28	29	30	
		32	33	34	35	36	37	38	
		40	41	42	43	44	45	46	
		48	49	50	51	52	53	54	
A		56	57	58	59	60	61	62	
U		64	65	66	67	68	69	70	
		72	73	74	75	76	77	78	
		80	81	82	83	84	85	86	
		88	89	90	91	92	93	94	
		96	97	98	99	100	101	102	
		104	105	106	107	108	109	110	
•		112	113	114	115	116	117	118	
		120	121	122	123	124	125	126	
		128	129	130	131	132	133	134	
on		136	137	138	139	140	141	142	
		144	145	146	147	148	149	150	
		152	153	154	155	156	157	158	
		160	161	162	163	164	165	166	
		168	169	170	171	172	173	174	
		176	177	178	179	180	181	182	
otr		184	185	186	187	188	189	190	
eury		192	193	194	195	196	197	198	
-		200	201	202	203	204	205	206	
		208	209	210	211	212	213	214	
		216	217	218	219	220	221	222	
		224	225	226	227	228	229	230	
		232	233	234	235	dlp0	dlp1	dlp2	d
		dlp4	dlp5	crc0	crc1	crc2	crc3	crc4	C
		crc6	crc7	ecc0	ecc0	ecc0	ecc1	ecc1	e

47

87 95 103

111 119

127 135

143 151

159 167

183 191

Retry Probability and FIT vs FBER Correlation

- Single Symbol Correct interleaved FEC plus 64-b CRC works well for raw FBER of 1E-6 even with high Lane correlation
- Retry probability per FLIT is 5 x 10⁻⁶
- B/W loss is 0.05% even with goback-n
- FIT is almost 0
- Can mitigate the bandwidth loss significantly by adopting retry only the non-NOP TLP FLIT

Spec Requirement: FBER of 1E-6 with a burst of <=16 to meet the performance goals with a light-weight FEC

Retry Time (ns)	200				
Raw Burst Error Probability	1.00E-04	1.00E-05	1.00E-06	1.00E-07	
Correlation second Lanes	1.00E-03	1.00E-03	1.00E-04	1.00E-05	
Width of Link	16	16	16	16	
Frequency	64	64	64	64	
Bits per FLIT/ lane	128	128	128	128	
Prob 0 error/ Lane (no correlation Lanes)	0.98728094	0.998720812	0.999872008	0.9999872	
Prob 1 error / Lane (no correlation Lanes)	0.01263846	0.001278375	0.000127984	1.28E-05	
Prob 2 errors/Lane (no correlation Lanes)	8.02622E-05	8.11777E-07	8.12698E-09	8.1279E-11	
Prob 3 errors/Lane (no correlation Lanes)	3.37135E-07	3.4095E-10	3.41333E-13	3.4137E-16	
Prob 4 errors/Lane (no correlation Lanes)	1.05365E-09	1.06548E-13	1.06667E-17	1.0668E-21	
Prob 0 errors in FLIT (w/ Lane correlation)	0.814801918	0.979728191	0.997954095	0.99979522	
Prob 1 errors in FLIT (w/ Lane correlation)	0.165450705	0.019778713	0.002040878	0.00020473	
Prob 2 errors in FLIT (w/ Lane correlation)	0.018486407	0.000487166	5.02119E-06	5.0364E-08	
Prob 3 errors in FLIT (w/ Lane correlation)	0.001203308	4.02153E-06	4.11326E-09	4.1225E-12	
Prob 4 errors in FLIT (w/ Lane correlation)	5.44278E-05	4.59176E-08	4.7216E-12	4.7348E-16	
Prob 0 errors all Lanes/ FLIT (w/ correlation)	0.814801918	0.979728191	0.997954095	0.99979522	
Prob of 1 error all Lanes/ FLIT	0.164402247	0.019766156	0.002040748	0.00020473	
Retry Prob/ FLIT (>1 error in all Lanes/ FLIT)	0.019747377	0.000493096	5.02725E-06	5.037E-08	
Number of FLITs over retry window	100	100	100	100	
0 uncorrected FLIT errors over retry window	0.136082199	0.951874769	0.9994974	0.99999496	
1 uncorrected FLIT errors over retry window	0.274140195	0.046959754	0.000502475	5.037E-06	
Retry prob over Retry time	0.863917801	0.048125231	0.0005026	5.037E-06	
Time per FLIT (ns)	2	2	2	2	
FLITs per sec	50000000	50000000	50000000	50000000	
FLITs per 1E9 hrs	1.8E+21	1.8E+21	1.8E+21	1.8E+21	
CRC bits	64	64	64	64	
Aliasing Prob	5.42101E-20	5.42101E-20	5.42101E-20	5.421E-20	
SDC/ FLIT	2.95054E-24	2.4892E-27	2.5 <u>5959E</u> -31	2.5667E-35	
FIT (Failure in Time)	0.005310966	4.48056E-06	4.60726E-10	4.6201E-14	
Effective BER (Single Symbol Correct)	6.17004E-05	1.5351E-06	1.57041E-08	1.574E-10	
Effective BER (Double Symbol Correct)	3.93042E-06	1.27108E-08	1.28687E-11	1.2884E-14	
Effective BER (Thirple Symbol Correct)	1.70087E-07	1.43493E-10	1.4755E-14	1.4796E-18	
			STO	RAGE DEVELOPER	,

PCIe[®] 6.0 Specification FLIT Mode Bandwidth at 64.0 GT/s

- Bandwidth increase = 2X (BW efficiency of FLIT mode) / (BW efficiency in non-FLIT mode)
- Overall, we see a >2X improvement in bandwidth (benefits most systems)
 - Efficiency gain reduces as TLP size increases
 - Beyond 512 B (128 DW) payload goes below 1
- Bandwidth efficiency improvement in FLIT mode due to the amortization of CRC, DLP, and ECC over a FLIT (8% overhead) – works out better than sync hdr, DLLP, Framing Token per TLP, and 4B CRC per TLP overheads in PCIe 5.0 specification

Bandwidth Efficiency improvement causes > 2X bandwidth gain for up to 512B Payload in 64.0 GT/s FLIT mode

Latency Impact of FLIT Mode

- FLIT accumulation in Rx only (Tx pipeline)
- FEC + CRC delay expected to be ~ 1-2 ns
- Expected Latency savings due to removal of sync hdr, fixed FLIT sizes (no framing logic, no variable sized TLP/ CRC processing) is not considered in Tables here
- With twice the data rate and the above optimizations, realistically expect to see lower latency except for x2 and x1 for smaller payload TLPs –worst case ~10ns adder

Data Size (DW)	TLP Size (DW)	La fc @	atency in ns or 128b/130b Ø 32.0GT/s	Latency in ns in FLIT Mode @ 64.0 GT/s	Latency Increase due to accumulation (ns)	Da (D	ata Size VW)	TLP Size (DW)	La fo @	tency in ns r 128b/130b 32.0GT/s	Latency in ns in FLIT Mode @ 64.0 GT/s	Latency Increase due to accumulation (ns)
	0	4	6.09375	18	8 11.9062	5	(0	4	0.380859375	1.125	0.744140625
	4	8	10.15625	20	0 9.8437	5		4	8	0.634765625	1.25	0.615234375
	8	12	14.21875	22	2 7.7812	5	:	8	12	0.888671875	1.375	0.486328125
	16	20	22.34375	20	6 3.6562	5	1	6	20	1.396484375	1.625	0.228515625
	32	36	38.59375	34	4 -4.5937	5	3	2	36	2.412109375	2.125	-0.287109375
	64	68	71.09375	50	0 -21.0937	5	6	4	68	4.443359375	3.125	-1.318359375
1	28 1	L32	136.09375	82	2 -54.0937	5	12	81	L32	8.505859375	5.125	-3.380859375
2	56 2	260	266.09375	14	6 -120.0937	5	25	62	260	16.63085938	9.125	-7.505859375
5	12 5	516	526.09375	274	4 -252.0937	5	51	2 5	516	32.88085938	17.125	-15.75585938
10	24 10)28	1046.09375	530	0 -516.0937	5	102	4 10)28	65.38085938	33.125	-32.25585938

Key Metrics for PCIe[®] 6.0 Specification: Evaluation

Metrics	Expectations	Evaluation		
Data Rate	64GT/s, PAM4 (double the bandwidth per pin every generation)	Meets		
Latency	<10ns adder for Transmitter + Receiver over 32.0 GT/s (including FEC) (We can not afford the 100ns FEC latency as n/w does with PAM-4)	Exceeds (Savings in latency with <10ns for x1/ x2 cases)		
Bandwidth Inefficiency	<2 % adder over PCIe 5.0 specification across all payload sizes	Exceeds (getting >2X bandwidth in most cases)		
Reliability	0 < FIT << 1 for a x16 (FIT – Failure in Time, failures in 10 ⁹ hours)	Meets		
Channel Reach	Similar to PCIe 5.0 specification under similar set up for Retimer(s) (maximum 2)	Meets		
Power Efficiency	Better than PCIe 5.0 specification	Design dependent – expected to meet		
Low Power	Similar entry/ exit latency for L1 low-power state Addition of a new power state (L0p) to support scalable power consumption with bandwidth usage without interrupting traffic	Design dependent – expected to meet; L0p looks promising		
Plug and Play	Fully backwards compatible with PCIe 1.x through PCIe 5.0 specification	Meets		
Others	HVM-ready, cost-effective, scalable to hundreds of Lanes in a platform	Expected to Meet		
	Meets or exceeds requirements on all key me	etrics STORAGE DEVELOPER CONFER		

Introduction: Evolution of PCI Express[®] Technology PCIe[®] 6.0 Specification: A deep dive PCI Express Technology and Storage Form Factors Compliance Conclusions

PCIe[®] SSDs for Storage

■ NVM Tread ■ NVM xfer ■ Misc SSD ■ Link Xfer ■ Platform + adapter ■ Software

• PCI Express[®] architecture is a great interface for SSDs

- Stunning performance
- Lane scalability
- Lower latency
- Lower power
- Lower cost

- 8 GB/s per lane/ direction (PCIe 6.0 specification x1 @ 64.0 GT/s)
- 32/16 GB/s per device (x4/ x2)
 - Platform + Adapter: 10 µsec down to 1 µsec
- No external SAS IOC saves 7-10 W
- No external SAS IOC saves \$
- CPU-integrated PCIe lanes Up to 128 PCIe 3.0 specification

With NVM Express[®] and PCIe technology evolution, storage is no longer the bottleneck

Enterprise SSD Unit Shipment Forecast by Interface

Source: Worldwide Solid State Storage Forecast, 2022–2026 (May 2022) IDC #US47831722

Enterprise SSD Capacity Shipment Forecast by Interface

Source: Worldwide Solid State Storage Forecast, 2022–2026 (May 2022) IDC #US47831722

RAS Features

- PCIe[®] architecture supports a very high-level set of Reliability, Availability, Serviceability (RAS) features
- All transactions protected by CRC-32 for non-Flit Mode and 6B FEC + 8B CRC for Flit Mode and Link level Retry, covering even dropped packets
- Error injection mechanism along with elaborate error logging in Flit Mode
- Transaction level time-out support (hierarchical)
- Well defined algorithm for different error scenarios
- Advanced Error Reporting mechanism
- Support for degraded link width / lower speed
- Support for hot-plug (planned and surprise)

DPC/ eDPC for RAS

- (enhanced) Downstream Port Containment (DPC and eDPC) for emerging usages
- Emerging PCIe[®] technology usage models are creating a need for improved error containment/recovery and support for asynchronous removal (a.k.a. hot-swap)
- Defines an error containment mechanism, automatically disabling a Link when an uncorrectable error is detected, preventing potential spread of corrupted data
- Reporting mechanism with Software capability to bring up the link after clean up
- Transaction details on a timeout recorded (side-effect of asynchronous removal)
- eDPC: Root-port specific programmable response to gracefully handle DPC downstream

I/O Virtualization

- Reduces System Cost and power
- Single Root I/O Virtualization Specification
 - Released September 2007
 - Allows for multiple Virtual Machines (VM) in a single Root Complex to share a PCI Express[®] adapter
- An SR-IOV endpoint presents multiple Virtual Functions (VF) to a Virtual Machine Monitor (VMM)
 - VF allocated to VM => direct assignment
- Address Translation Services (ATS) supports:
 - Performance optimization for direct assignment of a Function to a Guest OS running on a Virtual Intermediary (Hypervisor)
- Page Request Interface (PRI) supports:
 - Functions that can raise a Page Fault
- Process Address Space ID enhancement to support Direct assignment of I/O to user space

Security Mechanism in PCIe® Specification

Rationale: Protect key assets

- Consumers: data integrity, confidentiality
- Businesses & suppliers: reputation, revenue-stream, intellectual property, business continuity
- Governments: national security, defense, elections, infrastructure
- Approach: Cover a wide spectrum of systems / devices / components
 - Smart phones, tablets, PCs, servers, switches / routers, USB devices, processors, memory/storage/IO modules, power and cooling units, firmware, IoT devices, vehicles... PCIe technology is one of the aspects
 - Leverage security work in DMTF across multiple interconnects: USB, PCIe technology, DDR, CXL...
 - Use DMTF's (Distributed Management Task Force) Management Component Transport Protocol (MCTP)
 - Build upon existing standards (ISO, NIST, IEEE...) that are interconnect agnostic
 - Protect against multiple attacks: supply chain, physical, persistent, malicious components, etc.

Ack: Dave Harriman

PCI-SIG[®] & DMTF Specifications for Security

- SPDM defines a "toolkit" for authentication, measurement, and other security capabilities
- CMA/SPDM defines how SPDM is applied to PCIe[®] devices/systems
 - CMA 1.1 is planned, but not yet started
- DOE supports Data Object transport between host CPUs & PCIe components over PCIe technology
- Various MCTP bindings support Data Object transport over different interconnects
- IDE provides confidentiality, integrity, and replay protection for PCIe Transaction Layer Packets (TLPs)
- TDISP (in progress) defines the security architecture and protocol device interface assignment to TEEs

Ack: Dave Harriman

Agenda

Conclusions

Introduction: Evolution of PCI Express[®] Technology
 PCIe[®] Specification: 6.0: A deep dive
 PCI Express Technology and Storage
 Form Factors
 Compliance

PCIe[®] Architecture: One Base Specification - Multiple Form Factors

Cable Topology Support at 32 and 64 GT/s

Cable mitigates PCB loss limitations at 32+ GT/s and enables architectural flexibility

Internal and External Cable Topologies

and Routing

Compute Drawer

Ack: Debendra's Keynote at FMS 2022

A Typical External Cable Topology (e.g., connecting two boards within a rack) (Rack level dis-aggregation with CXL/ PCIe[®] technology enabled by PCIe cables)

Development of internal and external cable specs for 32 and 64 GT/s are work-in-progress

28 | ©2022 Storage Networking Industry Association. All Rights Reserved.

and Routing

Agenda

Introduction: Evolution of PCI Express[®] Technology
 PCIe[®] 6.0 Specification: A deep dive
 PCI Express Technology and Storage
 Form Factors

Compliance

Conclusions

PCI-SIG[®]: From Spec to Compliance

Predictable path to design compliance

Conclusions

Data Center / HPC

Mobile

Embedded Source: Intel Corporation

- Single standard covering the entire compute continuum
- Predominant direct I/O interconnect from CPU with high bandwidth and used for alternate protocols with coherency and memory semantics
 - Low-power, High-performance
- Currently working on 7th generation: 128 GT/s, PAM4, Same FEC/ CRC/ Retry mechanism as PCIe[®] 6.0 specification with full backward compatibility
 - Expecting flat latency, high reliability, and improved power efficiency
- A robust and mature compliance and interoperability program

Thank You!! Please take a moment to rate this session.

Your feedback is important to us.

