DNA Data Storage

DNA Data Storage Alliance - Rosetta Stone Initiative

Presented by

• Joel Christner, Director, Distinguished Engineer, Dell Technologies
• Alessia Marelli, CTO, DNAalgo
• Mark Wilcox, CEO and CTO, 21e8
Helpful Links

- Preserving our Digital Legacy – an Introduction to DNA Data Storage
Agenda

- Differences: DNA vs Traditional Media
- Overview of the Rosetta Stone
- How to Participate
- Summary
Differences: DNA vs Traditional Media
Differences: DNA vs Traditional Media

1. Exposing a device to the system

Architecture of a solid-state drive
Differences: DNA vs Traditional Media

2. Organizing abstractions to create filesystem storage
Differences: DNA vs Traditional Media

3. Media without integrated controller

Barcode with volume serial number, generation, and type of cartridge

Read LTFS from beginning of the tape
A “Primer” on DNA Data Storage Media

- The fundamental unit of storage in DNA is an oligonucleotide (also called ‘oligo’)
 - Short, single strand of synthetic DNA or RNA
 - Often a sugar phosphate backbone
 - Base compounds Adenine, Cytosine, Thymine, Guanine
 - Base compounds attach to the strand …
 - … and to a mate on the opposing strand
 - Adenine bonds w/ Thymine, Guanine bonds w/ Cytosine

- A DNA molecule is a pair of strands (oligos), tightly wound around one another, held together by the bonds between the bases
A “Primer” on DNA Data Storage Media

01 Coding
02 Synthesis
03 Storage
04 Retrieval
05 Sequencing
06 Decoding
A “Primer” on DNA Data Storage Media

- The process of storing binary data into DNA data storage media involves
 - Coding – conversion of binary numbers to ATGC base pairs (“bits to bases”)
 - Synthesis – creation of the strands and chemical bonds between the base compounds
 - Storage – placing constructed strands into sealed medium until contents are needed

- The process of retrieving binary data from DNA data storage media involves
 - Retrieval – accessing the sealed medium containing the required strands
 - Sequencing – discerning the bases found in a segment of DNA
 - Decoding – converting ATGC pairs into binary (“bases to bits”)

- DNA has neither addressable sectors (disk) or relative position (tape)
 - Locations and addresses must be encoded into the material itself
A “Primer” on DNA Data Storage Media

- A **primer** is a short stretch of DNA targeting a unique sequence, generally to identify the sequence for **amplification**.
- **Polymerase chain reaction (PCR)** is the process used to create one or many copies of the amplified DNA.
Overview of the DNA Data Storage Rosetta Stone project (DARS)
The problem

- DNA media does not share properties found in other storage media types
 - No built-in controller, or linear addressing of physical storage regions
 - No structured media topology
 - No built-in facilities for addressing specific parts of the media
 - Addresses (sectors) need to be encoded for later reading

- Multiple mechanisms (CODECs) exist for encoding data into DNA
 - CODEC must be discernable from within the media itself in a standard way

- With >100 year lifespan, we must anticipate technology evolution
 - Categories of innovation expected within DNA media and the value chain?
 - What is considered a safe assumption today that may not be one tomorrow?
What is an archive “boot record”?

- With traditional media, controller knows where sector zero resides, packages device metadata for the consumer
 - Operating system connects to and initializes device for consumption
 - Manages translation of upper layer APIs (e.g. POSIX) into lower layer protocol primitives (e.g. SCSI)
 - Generally governed by an intermediary (e.g. filesystem)
- No controller within DNA media, no linear addressing within the media, and no file system
Current State – Initializing an SSD

- Controller first reads information on E2PROM about HW configuration (type of NAND, timings, vendor ID, channel addressing, type of ECC used to load FW)
- Data read from E2PROM is protected by ECC to ensure reliability
Current State – Initializing an SSD

- Using previously read information, controller is able to read NANDs
- By reading block0 of NAND devices, controller loads the firmware
- Block0 is guaranteed good by NAND vendors for this purpose
Booting a Machine from an SSD

File System
- Sector 0 (MBR)
- Sector 1
- ...
- Sector n
Booting a DNA Data Storage Archive

- Without a controller how can we read the archive?
- Where can we discover metadata such as vendor ID, CODEC used in the archive?
- This metadata is contained in the archive itself, but we need a way to discriminate it from other data
Rosetta Stone Project (1/3)

- Part of DNA Data Storage Alliance
- Goals:
 - Agree on a common identifier format for universally bootstrapping any DNA Archive
 - Enable identification of the CODEC used to encode an archive, from within the archive
 - Enable innovation in DNA CODECs for the main archive by enabling a standard for discovering the CODEC that was used
 - Provide fast access to archive metadata
Rosetta Stone Project (2/3)

- **Working Assumptions**
 - A generally-available specification document is accessible
 - Archive boot record is built using natural DNA bases (ACTG)…
 - …but the archive may contain non-natural DNA bases
 - Standard means of identifying the CODEC used within the archive is needed
 - We assume a reader will have some form of Internet connectivity
 - DNA will primarily be used as a write-once archival medium
Rosetta Stone Project (3/3)

- **Decisions to Make**
 - Agreement upon length of oligonucleotides
 - …error recovery metrics and mechanisms
 - …how many “sectors” are required

- **Progress to Date**
 - Initial proposals drafted and discussed
 - Covering sector zero implementation, identification
 - Outlining payload contents and their meaning
 - Discussions and tests around error modeling and recoverability

- **Roadmap**
 - Reviewing future proposals
 - Creation of and maintenance of a specification of a standard
 - Build policy and procedure documentation
 - External registry of CODECs
Future State

- Rosetta Stone sets the stage for controllers, drivers, and ecosystem
 - Agreeing on decoding standard enables vendors to work on consumers of sector zero
 - Standard controller functions for management (e.g. SMART) may come from our error models

- Address space governance
 - CODEC ID / address issuance may work similar to IP addresses
 - DNA Data Storage Alliance could operate similar to ICANN

- Technology will always evolve
 - CODECs, address space will form part of the Alliance’s industry roadmap
 - Working assumptions based on current technology
 - Advances may lead to review of assumptions, error model, number of codecs etc.
 - Synergy with other SNIA storage technologies i.e. computational
 - Exposing novel CODEC capabilities enabled by the DNA medium
How to Participate
How to Participate

- Standards only succeed when they consider and support the needs of a broad base of constituents with an eye toward the future
- Our working group is growing and diverse, and looking to
 - Increase representation from both public and private sector
 - Increase representation from a variety of markets and domains

Subscribe to our newsletter on our website
https://dnastoragealliance.org

Follow us on Twitter
@DnaDataStorage

Follow us on LinkedIn
@dna-data-storage-alliance
Summary
Summary

- DNA data storage media provides the promise of density, durability, and cost effectiveness to meet the challenges of data growth, retention, compliance, and climate change.

- Writing data to DNA involves coding, synthesis, and storage, and conversely, reading data from DNA involves retrieval, sequencing, and decoding.

- DNA as a storage media does not share properties found in other storage media types, e.g. no built-in controller, or linear addressing of physical storage regions.

- Rosetta Stone aims to ensure that a DNA archive can be consumed in a consistent manner by making discoverable the structure and encoding of the archive.
Thank You
Please take a moment to rate this session.

Your feedback is important to us.